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Abstract: An analysis is given of the capability of the LHC to detect narrow resonances

using high luminosities and techniques for discriminating among models are discussed. The

analysis is carried out with focus on the U(1)X Abelian (Higgless) Stueckelberg extension

of the Standard Model (StSM) gauge group which naturally leads to a very narrow Z ′

resonance. Comparison is made to another class of models, i.e., models based on the warped

geometry which also lead to a narrow resonance via a massive graviton (G). Methods of

distinguishing the StSM Z ′ from the massive graviton at the LHC are analyzed using the

dilepton final state in the Drell-Yan process pp → Z ′ → l+l− and pp → G → l+l−. It

is shown that the signature spaces in the σ · Br(l+l−)-resonance mass plane for the Z

prime and for the massive graviton are distinct. The angular distributions in the dilepton

C-M system are also analyzed and it is shown that these distributions lie high above the

background and are distinguishable from each other. A remarkable result that emerges

from the analysis is the observation that the StSM model with Z ′ widths even in the MeV

and sub-MeV range for Z ′ masses extending in the TeV region can produce detectable

cross section signals in the dilepton channel in the Drell-Yan process with luminosities

accessible at the LHC. While the result is derived within the specific StSM class of models,

the capability of the LHC to probe models with narrow resonances in this range may hold

more generally.
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1. Introduction

The Stueckelberg mechanism allows for mass generation of an Abelian U(1) gauge boson

without the benefit of a Higgs mechanism. Specifically the models of ref. [1 – 3] are based

on the U(1) Stueckelberg extensions of the Standard Model (SM), i.e., on the gauge group,

SU(3)C ×SU(2)L×U(1)Y ×U(1)X . This extension of the SM involves a non-trivial mixing

of the U(1)Y hypercharge gauge field Bµ and the U(1)X Stueckelberg gauge field Cµ. The

Stueckelberg gauge field Cµ has no couplings with the visible sector fields, while it may

couple with a hidden sector, and thus the physical Z ′ gauge boson connects with the

visible sector only via mixing with the gauge bosons of the physical sector. These mixings,

however, must be small because of the LEP electroweak constraints and consequently the

couplings of the Z ′ boson to the visible matter fields are extra weak, leading to a very

narrow Z ′ resonance. The width of such a boson could be as low as a few MeV or even

lower and lie in the sub-MeV range. An exploration of the Stueckelberg Z ′ boson in the

CDF and DØ data was recently carried out in ref. [4] and promising prospects for its

observation at the Tevatron were noted. The models of Ref. [1 – 3] are to be viewed as

phenomenological, but may be low energy effective theories of a more unified structure.

Indeed the Stueckelberg mechanism is quite generic in string and D brane models [5 – 8] but

it remains to be seen if models of the type ref. [1 – 3] can be embedded in such structures.

The other class of models are those based on the warped geometry [9, 10] where a

narrow massive graviton excitation with a width lying in tens to hundreds of MeV can

arise in certain regions of its parameter space. Thus the Stueckelberg extensions and the

warped geometry models share the property of allowing for narrow resonances. It is then

pertinent to investigate the discovery potential, signature spaces and model discrimination

for this class of models at the LHC. This is the main focus of the analysis in this paper.

In the first part of the paper (Sections 2-7) we will discuss the discovery potential and

signatures of the Stueckelberg Z ′ model. In the second part (Section 8) we will carry

out a similar analysis for the case of warped geometry and present a criteria for model

discrimination between these two classes of models.

2. A brief overview of Stueckelberg extension of the SM

Before proceeding further we first review the minimal Stueckelberg extension based on

the gauge group SU(3)C × SU(2)L × U(1)Y × U(1)X [1]. The effective Lagrangian of the

Stueckelberg extension of the Standard Model (StSM) can be written as

LStSM = LSt + LSM, (2.1)

where LSM is the Standard Model Lagrangian

LSM ⊃ −1
2Tr (FµνFµν) − 1

4BµνBµν + g2A
a
µJ aµ

2 + gY BµJ µ
Y − (DµΦ)† (DµΦ) − V (Φ)

(2.2)

and LSt is given by

LSt = −1

4
CµνCµν + gXCµJ µ

X − 1

2
(∂µσ + M1Cµ + M2Bµ)2 . (2.3)
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Here Cµ is the gauge field associated with the extra U(1)X gauge group and J µ
X gives

coupling to the hidden sector but Cµ has no coupling to the visible sector; Bµ is the gauge

field associated with U(1)Y , σ is the axion, and M1 and M2 are mass parameters that

appear in the Stueckelberg extension.

2.1 Mass matrix of the StSM

After electroweak symmetry breaking the mass terms for the neutral vector bosons take

the form

LStSM ⊃ −1

2
VT

µ M2
StVµ, (2.4)

where

Vµ =







Cµ

Bµ

A3µ






M2

St =







M2
1 M1M2 0

M1M2 M2
2 + 1

4v2g2
Y −1

4v2g2gY

0 −1
4v2g2gY

1
4v2g2

2






, (2.5)

and where, v is vacuum expectation value of the Higgs field. The mass squared matrix,

being real and symmetric, can be diagonalized by an orthogonal transformation RTM2
StR =

M2
St−diag, with eigenvectors ET

µ = (Z ′
µ, Zµ, Aγ

µ). The corresponding eigenvalues, denoted as

{λi}, are given by {M2
Z′ ,M2

Z ,M2
γ} = {M2

+,M2
−, 0} where

M2
± =

1

2

[

M2
0 + M2

1

(

1 + ε2
)

(2.6)

±
[

(

M2
0 + M2

1

(

1 + ε2
))2 − 4M2

1

(

M2
0 + M2

W ε2
)

]1/2
]

,

and where

M2
0 =

v2

4
(g2

2 + g2
Y ), M2

W =
g2
2v

2

4
, tW =

gY

g2
, ε =

M2

M1
. (2.7)

The zero eigen-mode is manifest and is to be associated with the massless photon state.

In the above model, the photon field is a linear combination of the set of three fields

(Cµ, Bµ, A3µ), which is the first indication that the StSM is distinct from other class of

extensions of the SM which predict additonal spin one gauge bosons [11 – 19]. In the limit

M2 ¿ M1, i.e. ε → 0, the Stueckelberg sector decouples from the Standard Model and the

tree level expressions for the Standard Model Z boson mass is recovered, while the Z ′ mass

limits to M1 which is the overall scale of new physics in the StSM. As discussed above, the

physical fields ET
µ = (Z ′

µ, Zµ, Aγ
µ) are related to the fields VT

µ = (Cµ, Bµ, A3
µ) through the

orthogonal transformation Vµ = REµ. The matrix R is easily formed from the eigenvectors

ξλi
so that one may write R = (ξλ1

, ξλ2
, ξλ3

), where

ξλi
=

[

(

M2
1 ε

−M2
W tW

M2
W − λi

M2
1 − λi

)2

+

(

M2
W − λi

M2
W tW

)2

+ 1

]−1/2









M2

1
ε

−M2

W
tW

M2

W
−λi

M2

1
−λi

M2

W
−λi

M2

W
tW

1









(2.8)

and where {λi} are the eigenvalues of the mass matrix of eq. (2.5) as given above.
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2.2 Neutral current interactions of the StSM

The interaction Lagrangian in the neutral sector of the StSM, involving the couplings of

visible matter to the gauge fields, is given by

LN = gM

∑

f

f̄γµ[(vf − γ5af )Zµ + (v′f − γ5a
′
f )Z ′

µ]f + eAγ
µ

(

J µ
Y + J 3µ

2L

)

. (2.9)

Here gM = (
√

2GF M2
Z)1/2 =

√

g2
2 + g2

Y /2, and the electrical charge e is given by

1

e2
=

1

g2
2

+
1

g2
Y

(1 + ε2) (2.10)

where e limits to the SM relation as ε → 0. The couplings to the Z and Z ′ gauge bosons

are then determined to be

vf = (cW R32 − sW R22)T
3
f + 2QfsW R22

af = (cW R32 − sW R22)T
3
f ,

(2.11)

v′f = (cW R31 − sW R21)T
3
f + 2QfsW R21

a′f = (cW R31 − sW R21)T
3
f ,

(2.12)

where cW = g2/
√

g2
2 + g2

Y , and sW = gY /
√

g2
2 + g2

Y . In the limit ε → 0 one has R31, R21,→
0, R22 → −sW and R32 → cW (see Eqs. (2.8)), so that vf → vf (SM) = T 3

f − 2Qfs2
W

and af → af (SM) = T 3
f . The coupling structure of the Stueckelberg Z ′ gauge boson with

visible matter fields is suppressed by small mass mixing parameters thus leading to a very

narrow Z ′ resonance. As will be discussed in Sections (6-8), such a resonance may be

detectable via the Drell-Yan process at the LHC by an analysis of a dilepton pair arising

from the decay of the Z ′. The partial fermion decay widths of the StSM Z ′ are given by

Γ(Z ′ → νν̄) =
GF M2

Z

6
√

2π
MZ′

[

v′2ν + a′2ν
]

(2.13)

Γ(Z ′ → eē) =
GF M2

Z

6
√

2π
MZ′

[

v′2e + a′2e
]

(2.14)

Γ(Z ′ → uū) = Nc
GF M2

Z

6
√

2π
MZ′

[

v′2u + a′2u
]

(

1 +
αs

π

)

(2.15)

Γ(Z ′ → dd̄) = Nc
GF M2

Z

6
√

2π
MZ′

[

v′2d + a′2d
]

(

1 +
αs

π

)

(2.16)

Γ(Z ′ → tt̄) = θ(MZ′ − 2mt)Nc
GF M2

Z

6
√

2π
MZ′

√

1 −
(

2mt

MZ′

)2

(2.17)

×
[

v′2t

(

1 + 2
m2

t

M2
Z′

)

+ a′2t

(

1 − 4
m2

t

M2
Z′

)]

(

1 +
αs

π

)

,

where Nc = 3 and we have included the leading order QCD corrections, but neglected the

relatively small electroweak corrections and fermion masses except for the top quark mass.

Additionally for MZ′ > 2MW , the Z ′ can decay into W+W− which is determined by the

– 4 –
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Figure 1: The StSM Z ′ branching ratios into f f̄ and W+W− final states as a function of the Z ′

mass with f = u, t, e, d, ν with ε = 0.06. Besides the exceptionally narrow total decay width, the

large branching ratio of the StSM Z ′ into charged leptons further distinguishes this model from

other Z ′ models.

triple gauge boson vertex,

LZ′WW = ig2R31

[

W+
µνW

−µZ ′ν + W−
µνW+νZ ′µ + W+µW−νZ ′

µν

]

. (2.18)

The W+W− decay width is then given by

Γ(Z ′ → W+W−) = θ(MZ′ − 2MW )
g2
2R

2
31

192π
MZ′

M4
Z′

M4
W

[

1 − 4
M2

W

M2
Z′

]
3

2

×
[

1 + 20
M2

W

M2
Z′

+ 12
M4

W

M4
Z′

]

, (2.19)

in agreement with previous analyses of Z ′ decays [20, 21]. The W+W− decay mode is

suppressed by the small factor R31, the element of the rotation matrix which indicates the

mixing between Z ′ and A3 gauge bosons. The Γ(Z ′ → W+W−) width is typically small

relative to Γ(Z ′ → ∑

i fif̄i). It will be shown in the following sections that ε is severely

limited by the electroweak constraints which leads to a Stueckelberg Z ′ resonance with a

very narrow decay width. Thus the Z ′ decay width lies in the ≤ 100 MeV range with MZ′

– 5 –
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lying in the several hundred GeV to 1 TeV range. In figure 1 it is shown that the Z ′ decays

into quarks and leptons will dominate the total Z ′ decay width, as the W+W− decay mode

is roughly the same size as one species of νν̄ mode. One may note that the branching ratio

of Z ′ into the charged leptons is relatively large compared to what one has in conventional

models. This is due to the StSM Z ′ couplings being dominated by the hypercharge of the

particle in the final state. Thus, the isospin singlet lR which has a hypercharge Y = −2

contributes a significant amount which makes the charged lepton contribution comparable

to the up quark contribution overcoming the color factor. The above also indicates that

this Z ′ model can be efficiently tested in an e+e− collider with polarized beams where one

could check on the lR vs. lL couplings. Such an experiment will be possible at the ILC.

The above, coupled with the Drell-Yan analysis is a prime example of the physics interplay

between the ILC and LHC [50].

3. The Stueckelberg extension of LR symmetric models

3.1 Mass matrix and interactions

Next we discuss the Stueckelberg extension of the Left-Right Symmetric model (abbreviated

by StLR) introduced in [4]. The gauge sector of this group is given by SU(2)L ×SU(2)R ×
U(1)B−L × U(1)X with gauge bosons Aaµ

L , Aaµ
R , Bµ, Cµ. As in LR models we assume the

Higgs sector of the model to include SU(2)L and SU(2)R doublets ΦL,R and a SU(2)L ×
SU(2)R bi-doublet ξ. We take the Lagrangian for the extended model to be

LStLR = LSt + LLR, (3.1)

where LSt is the same as in StSM and is given by eq. (2.3), and where LLR is the standard

Left Right Symmetric Lagrangian [22] which we display below to define notation

LLR = −1

2
Tr

(

FLµνFµν
L

)

− 1

2
Tr

(

FRµνFµν
R

)

− 1

4
BµνBµν (3.2)

+gAa
LµJ aµ

2L + gAa
RµJ aµ

2R + g′BµJ µ
B−L − (DµΦL)† DµΦL

− (DµΦR)† DµΦR − Tr
[

(Dµξ)† (Dµξ)
]

− V (ΦL,ΦR, ξ) .

We work with the manifest L-R symmetry g = g2L = g2R, and we use the notation

g′ = gBL. The set of Higgs multiplets under one pattern of symmetry breaking takes the

form 〈ΦL〉 = vL/
√

2, 〈ΦR〉 = vR/
√

2, and

〈ξ〉 =
1√
2

(

κ 0

0 κ′

)

, (3.3)

with κ′ ¿ κ ¿ vR, vLvR = γκ2 and γ being the ratio of Higgs-particle self-couplings [22].

The mass squared matrix in the neutral sector is given by

M2
StLR =











M2
1 M1M2 0 0

M1M2
1
4

(

v2
L + v2

R

)

g′2 + M2
2 −1

4gg′v2
L −1

4gg′v2
R

0 −1
4gg′v2

L
1
4g2

(

v2
L + κ2 + κ′2

)

−1
4g2

(

κ2 + κ′2
)

0 −1
4gg′v2

R −1
4g2

(

κ2 + κ′2
)

1
4g2

(

v2
R + κ2 + κ′2

)











(3.4)
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which enters in the Lagrangian through

LStLR ⊃ −1

2
ṼT

µ M2
StLRṼµ with ṼT

µ = (Cµ, Bµ, A3
Lµ, A3

Rµ). (3.5)

The matrix of eq. (3.4) contains a massless mode, i.e. the photon, and three massive modes

Z,Z ′, Z ′′. We arrange the eigenvalues of M2
StLR in the order

M2
StLR−diag = diag

(

M2
Z′ ,M2

Z , 0,M2
Z′′

)

, (3.6)

with the corresponding eigenvectors

ẼT
µ =

(

Z ′
µ, Zµ, Aγ

µ, Z ′′
µ

)

, (3.7)

where Ṽµ and Ẽµ are related by Ṽµ = OẼµ, where O is an orthogonal matrix, OTO = I.

In our notation Aγ
µ, Zµ, Z ′′

µ are the usual modes in the LR model and Z ′
µ is the new mode

arising due to mixing with the Stueckelberg sector. In this model the neutral current

interactions have the form

gM

∑

f

f̄γµ[(vf − γ5af )Zµ + (v′f − γ5a
′
f )Z ′

µ]f + eAγ
µ

(

J µ
B−L + J 3µ

2L + J 3µ
2R

)

(3.8)

where e is given by
1

e2
=

1

g2
(1 − ε2) +

1

g2
Y

(1 + ε2) (3.9)

and where gY is related to g = g2L = g2R and gBL = g′ by 1/g2
Y = 1/g2 + 1/g2

BL. The

above relations limit to the standard LR relation as ε = M2/M1 → 0.

The vector and axial vector couplings of Z and Z ′ to the matter fields are determined

as in Section 2.2 and are,

vf = 1√
g2

2
+g2

Y

[g(O32 + O42)T
3
f + g′O22(B − L)f ]

af = 1√
g2

2
+g2

Y

[g(O32 −O42)T
3
f ],

(3.10)

v′f = 1√
g2

2
+g2

Y

[g(O31 + O41)T
3
f + g′O21(B − L)f ]

a′f = 1√
g2

2
+g2

Y

[g(O31 −O41)T
3
f ].

(3.11)

The StLR Z ′ and StSM Z ′ share remarkably similar properties. A comparison between

these two models is exhibited in Table (2). The analysis shows the interesting phenomenon

that although the maximum allowed value of ε in the StLR is somewhat larger than in the

StSM, the constraints on the axial-vector and vector couplings of the Z ′ with quarks and

leptons and on the couplings with W+W− are very similar to those in StSM. Consequently

the branching ratios of the Z ′ into these modes are very similar. Thus as in the case of

the StSM, one also finds that in the StLR, the dominant contribution to the decay of the

Z ′ is from the quark and lepton final states. Restrictions on the parameter space of the

limiting form of the StLR, which is the LR model, show that the decay into the extra heavy

W+W− final state is not kinematically allowed.

– 7 –
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4. Constraints on the U(1)X extensions

4.1 Constraint from the correction to the Z mass

We use the variational technique of ref. [23] to derive the shift on the Z mass due to the

effect of mixing with Cµ. In general, for a real symmetric n × n matrix, the eigenvalue

equation is an nth order polynomial in λ

F (λ) =

n
∑

k=1

C(k)λk = 0. (4.1)

The correction to an eigenvalue λi due to a set of perturbation δk may be written as

∆λi =
m

∑

k=1

δk
∂λi

∂δk
= −

m
∑

k=1

δk

(

∂δk
F

∂λF

)

λ=λ∗

ik

, (4.2)

where λ∗
ik = limδk→0 λi. For the U(1)X extended theory we have after factoring out the

zero eigenvalue the equation F (λ) = C(2)λ2 + C(1)λ + C(0) with

C(2) = 1

C(1) = −(M2
0 + M2

1 + M2
2 )

C(0) = M2
1 M2

0 + M2
0 M2

2 c2
W ,

(4.3)

where we are interested in the shift on the Z mass (as given by eq. (2.7)) due to the

perturbation δ = M2
2 . The above gives

∆MZ ≈ −1

2
M0s

2
W (1 − M2

0 /M2
1 )−1ε2. (4.4)

To determine the allowed corridors in ε and M1, we follow a similar approach as in the

analysis of Refs. [24, 25] used in constraining the size of extra dimensions. We begin by

recalling that in the on-shell scheme the W boson mass including loop corrections becomes

[26]

M2
W → πα√

2GF s2
W (1 − ∆r)

, (4.5)

where the Fermi constant GF and the fine structure constant α (at Q2 = 0) are known to

a high degree of accuracy. The quantity ∆r is the radiative correction and is determined

so that ∆r = 0.0363± 0.0019 [27], where the uncertainty comes from error in the top mass

and from the error in α(M2
Z). Since in the on-shell scheme s2

W = (1 − M2
W /M2

Z) one may

use eq. (4.5) and the current experimental value of MW = 80.425 ± 0.034 [27] to make

a prediction of MZ . Such a prediction within the SM is in excellent agreement with the

current experimental value of MZ = 91.1876 ± 0.0021. Thus the above analysis requires

that the effects of the Stueckelberg extension on the Z mass must be such that they lie in

the error corridor of the SM prediction. From eq. (4.5) we find

δMZ = MZ

√

(

1 − 2 sin2 θW

cos3 θW

δMW

MZ

)2

+
tan4 θW (δ∆r)2

4(1 − ∆r)2
. (4.6)

– 8 –
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Equating the StSM shift of the Z mass, eq. (4.4), in the region M2
1 À M2

Z , to the SM

error corrider of the Z mass, eq. (4.6), one finds an upper bound on ε [4]

|ε| . .061
√

1 − (MZ/M1)2. (4.7)

4.2 Constraints from other precision electroweak data

Next we investigate the implications of the previous analysis on the precisely determined

observables in the electroweak sector. We follow closely the analysis of the LEP Working

Group [27] (see also Refs. [28, 29]), except that we will use the vector (vf ) and the axial

vector (af ) couplings for the fermions in the StSM. The couplings of the Z to the fermions

in the StSM are elevated from the tree level expressions of Eqs. (2.11) to

vf =
√

ρf [(cW R32 − sW R22)T
3
f + 2κf QfsW R22]

af =
√

ρf (cW R32 − sW R22)T
3
f ,

(4.8)

where ρf and κf (in general complex valued quantities) contain radiative corrections from

propagator self energies and flavor specific vertex corrections and are as defined in Refs.

[30, 27]. The decay of the Z boson into lepton anti-lepton and quark anti-quark pairs

(excluding the top) in the on-shell renormalization scheme is given by [28, 30]

Γ(Z → f f̄) = N c
fRfΓo

√

1 − 4µ2
f

[

|vf |2(1 + 2µ2
f ) + |af |2(1 − 4µ2

f )

]

, (4.9)

Rf =
(

1 + δQED
f

)

(

1 +
N c

f − 1

2
δQCD
f

)

, (4.10)

δQED
f =

3α

4π
Q2

f , (4.11)

δQCD
f =

αs

π
+ 1.409

(αs

π

)2
− 12.77

(αs

π

)3
− Q2

f

ααs

4π2
. (4.12)

Here α and αs are taken at the MZ scale, while N c
f = (1, 3) for leptons and quarks. In the

above, Γo = GF M3
Z/6

√
2π, and µf = mf/MZ . The total decay width (ΓZ) of the Z into

quarks and leptons, in the visible sector, is just the sum over all the final states.

We also investigate the effects of mixing with the Stueckelberg sector on the following

Z pole observables

Rl =
Γ(had)

Γ(l+l−)
, (4.13)

Rq =
Γ(qq̄)

Γ(had)
, (4.14)

σhad =
12πΓ(e+e−)Γ(had)

M2
ZΓ2

Z

, (4.15)

Af =
2vfaf

v2
f + a2

f

, (4.16)

A
(0,f)
FB =

3

4
AeAf . (4.17)
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StSM Electroweak Fit

Quantity Value (Exp.) StSM ∆Pull

ΓZ [GeV] 2.4952 ± 0.0023 (2.4952-2.4942) (0.2, 0.6)

σhad [nb] 41.541 ± 0.037 (41.547-41.568) (-0.3, -0.9)

Re 20.804 ± 0.050 (20.753-20.761) (-0.1, -0.2)

Rµ 20.785 ± 0.033 (20.800-20.761) (-0.1, -0.4)

Rτ 20.764 ± 0.045 (20.791-20.807) (-0.1, -0.3)

Rb 0.21643 ± 0.00072 (0.21575-0.21573) (0.0, 0.0)

Rc 0.1686 ± 0.0047 (0.1711-0.1712) (0.0, 0.0)

A
(0,e)
FB 0.0145 ± 0.0025 (0.0168-0.0175) (-0.2, -0.5)

A
(0,µ)
FB 0.0169 ± 0.0013 (0.0168-0.0175) (-0.3, -0.9)

A
(0,τ)
FB 0.0188 ± 0.0017 (0.0168-0.0175) (-0.2, -0.7)

A
(0,b)
FB 0.0991 ± 0.0016 (0.1045-0.1070) (-0.8, -2.3)

A
(0,c)
FB 0.0708 ± 0.0035 (0.0748-0.0766) (-0.3, -0.8)

A
(0,s)
FB 0.098 ± 0.011 0.105-0.107) (-0.1, -0.3)

Ae 0.1515 ± 0.0019 (0.1491-0.1524) (-1.0, -2.8)

Aµ 0.142 ± 0.015 (0.149-0.152) (-0.1, -0.4)

Aτ 0.143 ± 0.004 (0.149-0.152) (-0.5, -1.3)

Ab 0.923 ± 0.020 (0.935-0.935) (0.0, 0.0)

Ac 0.671 ± 0.027 (0.669-0.670) (0.0, 0.1)

As 0.895 ± 0.091 (0.936-0.936) (0.0, 0.0)

Table 1: Results of the StSM fit to a standard set of electroweak observables at the Z pole for ε

in the range (.035− .059) for M1 = 350 GeV. The Pulls are calculated as shifts from the SM fit via

∆Pull = (SM − StSM)/δExp and Pull(StSM)=Pull(SM)+ ∆Pull. The data in column 2 is taken

from ref. [69].

Using the above we have carried out a fit in the electroweak sector on the quantities

sensitive to mixing with the Stueckelberg sector. A summary of the analysis is presented

in Table (1) for M1 = 350 GeV and ε lying in the range (0.035-0.059). The analysis of

Pulls in Table (1) indicates that the fits are excellent. Indeed for the case ε = .035, the

StSM gives essentially the same χ2 fit to data as the SM. For the case ε = 0.059 the Pulls

are again of the same quality as for the SM when A
(0,b)
FB is excluded but somewhat larger

when A
(0,b)
FB is included. However, A

(0,b)
FB is known to be problematic even in the SM. Thus,

for example, A
(0,b)
FB lies in the range [-2.5,-2.8] in the analysis of ref. [27] and it is implied

that the significant shift could be the result of fluctuations in experimental measurements.

It is similarly stated in ref. [30] that at least a part of the problem in this case may be

experimental. The above appears to indicate that A
(0,b)
FB is on a somewhat less firm footing

than the other electroweak parameters. The constraints on the Z ′ of StLR are very similar

to the constraints on the Z ′ arising in StSM and we do not give a separate detailed analysis

of it here.
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Comparing the StSM and StLR

Quantity StSM StLR

ε = M2/M1 .060 .071

MZ′ [GeV] 500 500

(v′ν , a′ν) (0.014638, 0.014638) (0.014615, 0.014621)

(v′e , a′e) (0.042401, -0.014638) (0.042352, -0.014621)

(v′u , a′u) (-0.023388, 0.014638) (-0.023363, 0.014621)

(v′d , a′d ) (0.004375, -0.014638) (0.004374, -0.014621)

ΓZ′ [GeV] 0.0297 0.0299

Br(νeν̄e) 2.36% 2.60%

Br(e+e−) 12.33% 12.33%

Br(uū) 14.52% 14.42%

Br(dd̄) 4.45% 4.42%

Br(tt̄) 10.93% 10.85%

Br(W+W−) 2.60% 2.56%

Table 2: Comparison of the Z ′ branching ratios in StSM and StLR model at MZ′ = 500 GeV

for the maximum allowed value of ε consistent with the analysis of Sec. (4.1). The couplings and

branching ratios for the Z ′ in the two models turn out be remarkably close.

4.3 LEP-II constraints

In addition to the above one may also utilize the LEP-II data above the Z pole in con-

straining models. These constraints can be efficiently parameterized in terms of contact

interactions such that [31, 32, 18]

Lcontact =
±4π

(1 + δef )(Λ±f
AB)2

(

ēγµPAef̄γµPBf
)

(4.18)

where A,B denote left and right chirality (i.e PA=L,R = (1 ∓ γ5)/2), δef = 1, 0 for f =

e,(f 6= e), and where the constraints on Λ±f
AB, have been given for various A,B and f in

ref. [32]. Thus, the LEP-II bounds on Λ’s are of the order (1-20) TeV, with the strongest

experimental constraint coming from Λ+l
V V > 21.7 TeV.

To examine the effect of the LEP-II constraints from contact interactions we compute

the Λ parameters, as predicted by the StSM (or StLR), and compare our limits on Λ±f
AB

with the experimental bounds. The Z ′ contact interactions can be written as (see eq. (2.9))

LZ′ = gM

∑

f

(L′
f f̄LγµfL + R′

f f̄RγµfR)Z ′
µ, (4.19)

where

L′
f = v′f + a′f

R′
f = v′f − a′f .

(4.20)
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Figure 2: An exhibition of Λ’s defined by eq. (4.21) as predicted in StSM using the constrained

values of (ε, MZ′) from the Tevatron (lower wiggly part of curves) and LEP-I bounds (upper linear

part of curves) of ref. [4]. We note that the limits exhibited above lie significantly above the limits

given by the LEP-II analysis of ref. [32]. In particular, in the analysis exhibited above, the smallest

Λ arises for the case Λe

RR
and its lower limit is 50 TeV while the largest Λ from LEP-II constraint

is 21.7 TeV [32]. Thus the data from LEP-II contact terms put no further constrains on the StSM

parameter space beyond the LEP-I and the Tevatron constraints.

From the above we obtain in the limit M2
Z′ À s, where

√
s is the C-M energy of the process

e+e− → f̄f , the following relation

Λf
AB =

√

4π

|C′f
AC′f

B|
MZ′

gM
, (4.21)

where C′f
A,B = L′

f , R′
f , v′f , a′f .

In figure 2 we give the analysis for the constraints imposed by the LEP-II data on

the contact interactions, where the couplings C′f
A,B of eq. (4.21) have been calculated with

the (ε,MZ′) constrained values from the Tevatron and LEP-I bounds of ref. [4], (see also

Section (6.2)). We note that the lower limits on Λ’s exhibited in figure 2 lie significantly

above the limits given by the LEP-II analysis. In particular in the StSM analysis the

strongest limits on Λ arise for the case f = l, A = B = R. The reason for this is that

the Z ′ couplings are dominated by the hypercharge and the hypercharge is the largest for
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the right handed lepton. In this case we find from figure 2 that the smallest value of Λe
RR

is ∼ 50 TeV which is roughly a factor of 5 larger than the experimental bound for this

case, and more than a factor of two larger than the strongest constraint of 21.7 TeV for all

channels given by LEP-II [32]. Thus, the limits arising from the LEP-II data on contact

interactions [32] provide no further constraints on the StSM than those already imposed by

the LEP-I and the CDF and DØ constraints. Our result here coincide with the observation

of [18] regarding the LEP-II constraints when the Z ′ couplings are very small.

5. Comparison of the Stueckelberg Z
′ and classic Z

′ models

5.1 The Stueckelberg Z ′ and the CDDT parametrization

It is instructive to compare the Stueckelberg Z ′ model with other Z ′ models. For this

purpose it is convenient to use the parametrization of the orthogonal matrix R in terms of

angles [3]

R =







cψcφ − sθsφsψ −sψcφ − sθsφcψ −cθsφ

cψsφ + sθcφsψ −sψsφ + sθcφcψ cθcφ

−cθsψ −cθcψ sθ






, (5.1)

where

tan(φ) =
M2

M1
= ε, tan(θ) =

gY

g2
cos(φ) = tan (θW ) cos(φ), (5.2)

tan(ψ) =
tan(θ) tan(φ)M2

W

cos(θ)
(

M2
Z′ − M2

W (1 + tan2(θ))
) . (5.3)

The SM limit, again, corresponds to ε → 0 which implies tan(φ), tan(ψ) → 0 and θ → θW .

Using eq. (5.1) we may write the photon field Aγ
µ in the form

Aγ
µ = −cθsφCµ + cθcφBµ + sθA

3
µ, (5.4)

which shows that the photon field contains a component outside of the set (Bµ, A3
µ) while

in the conventional Z −Z ′ models the photon field is just a linear combination of the fields

(Bµ, A3
µ). This is what sets the StSM model apart from the conventional models. To carry

out the comparison with the Z −Z ′ models a bit further we might try to mimic the Z −Z ′

models by introducing “ rotated fields ” B̃µ
Y and C̃µ

B̃µ
Y = Bµ cos φ − Cµ sin φ

C̃µ = Bµ sinφ + Cµ cos φ, (5.5)

where the rotation depends only on ε. In terms of new variables the physical vector fields

in StSM are

Aµ
γ = W 3µ sin θ + B̃µ

Y cos θ

Zµ = (W 3µ cos θ − B̃µ
Y sin θ) cos ψ + C̃µ sin ψ

Z ′µ = C̃µ cos ψ − (W 3µ cos θ − B̃µ
Y sin θ) sin ψ, (5.6)
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where W 3µ ≡ A3µ. The mass terms for a generic Z − Z ′ mixing model with the gauge

group SU(2)L × U(1)Y × U(1)Z are typically given by [18]

v2
H1

8
(gW 3µ − gY Bµ− zH1

gZBµ
Z)2 +

v2
H2

8
(gW 3µ − gY Bµ− zH2

gZBµ
Z)2 +

v2
φ

8
(zφgZBµ

Z)2 (5.7)

where gZ is the U(1)Z gauge coupling constant and Bµ
Z is used to denote the U(1)Z gauge

field. Here the eigenvectors for the photon, Z and Z ′ are as follows

Aµ
γ = W 3µ sin θW + Bµ cos θW

Zµ = (W 3µ cos θW − Bµ sin θW ) + εZBµ
Z

Z ′µ = Bµ
Z − εZ(W 3µ cos θW − Bµ sin θW ) (5.8)

where

εZ =
δM2

ZZ′

M2
Z′ − M2

Z

, (5.9)

and where MZ , MZ′ and δM2
ZZ′ are given by

M2
Z =

g2(v2
H1

+ v2
H2

)

4 cos2 θW
[1 + O(ε2

Z)]

M2
Z′ =

g2
Z

4
(z2

H1
v2
H1

+ z2
H2

v2
H2

+ z2
φv2

φ)[1 + O(ε2
Z)]

δM2
ZZ′ = − ggZ

4 cos θW
(zH1

v2
H1

+ zH2
v2
H2

). (5.10)

Using the rotated fields one finds that there is some similarity between the expressions

for the physical fields in eq. (5.6) and in eq. (5.8). However, this similarity is superficial

and a closer scrutiny of the mass matrices reveals that there is no limiting procedure

connecting the sets of expressions. Of course this should be rather obvious since the

symmetry breaking in the Z − Z ′ models arises only from the Higgs sector while in StSM

such a breaking arises both from the Higgs sector and from the Stueckelberg sector. Further,

in Z − Z ′ analyses εZ is severely constrained by LEP data ( |εZ | . 10−3) and is either

neglected [18, 33] in the diagonalizaton procedure or the case considered is zH2
= 0 with

tan β = vH2
/vH1

& 10 . In either case, these extensions do not allow for narrow resonances

of MeV size widths. The mass matrix given in eq. (2.5) is also valid for the minimal

Stueckelberg Supersymmetric Standard Model [StMSSM] [2]. Some of the experimental

implications of StSM and of StMSSM particularly with regard to the e+e− colliders were

investigated in ref. [3]. However, the implications at hadron colliders and specifically at

the LHC were not discussed and this is the main topic of discussion in this paper. In

summary the Stueckelberg extended models form a new class outside the framework of the

usual Z − Z ′ mixing models given generically by Eqs. (5.7-5.10) and there is no limiting

procedure connecting these models with the StSM.

6. LHC observables and constraints on the StSM parameter space

6.1 Drell-Yan cross section for pp → Z ′ → l+l−

Next we discuss the production of the narrow Z ′ by the Drell-Yan process at the LHC. For

the hadronic process A + B → V + X, and the partonic subprocess qq̄ → V → l+l−, the
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dilepton doubly differential cross section to next to leading order (NLO) is given by

d2σAB

dM2dz
= K

1

s

∑

q

[

dσSM
qq̄

dz
+

dσSt−SM
qq̄

dz
+

dσSt
qq̄

dz

]

W{AB(qq̄)}(s,M
2). (6.1)

W{AB(qq̄)}(τ) =

∫ 1

0

∫ 1

0
dxdyδ(τ − xy)P{AB(qq̄)}(x, y),

P{AB(qq̄)}(x, y) = fq,A(x)fq̄,B(y) + fq̄,A(x)fq,B(y). (6.2)

Here the dimensionless variable τ = M2/s relates the invariant mass M of the final state

lepton pair to the center of mass energy
√

s of the colliding hadrons and z = cos θ∗,

where θ∗ is the angle between an initial state parton and the final state lepton in the

C-M frame of the lepton anti-lepton pair. The term dσSM/dz is the Standard Model

contribution, dσSt/dz is the contribution from the Stueckelberg sector, and dσSt−SM/dz

is the interference term between the Standard Model and the Stueckelberg sectors. The

parton distribution functions (PDFs) which we denote by fq,A(x) give the probability that

a parton of type q has a fracton x of the total hadron four momentum. The dependence

of fq,A(x) on the mass factorization scale Q = M is implicit. For the LHC A = B = p,

and one must note that quite generally that fq,A = fq̄,Ā and fq̄,A = fq,Ā. The Drell-Yan

K factor is as discussed in detail in Refs. [34, 18, 16, 28, 36]. The invariant dilepton

differential cross section is at NLO

dσAB

dM
= K

2M

s

∑

q

σqq̄

(

M2
)

W{AB(qq̄)}(τ), (6.3)

where the partonic cross section, σqq̄, is defined by integrating the term in square brackets

of eq. (6.1) over the variable z and is computed in Ref. [3]. While dσ/dM is sensitive to

the interference term, the integral over dM is not. Thus for the computation of dσ/dz one

may just use the Z ′ pole contribution in eq. (6.1). Using the analysis of Ref.[3] for the

partonic process qq̄ → l+l− one finds that for pp collisions the integration of the third term

of eq. (6.1) over M2 yields the angular distribution for the StSM Z ′ model

dσAB

dz
=

K

s

∑

q

W{AB(qq̄)}(s,M
2
Z′)

G2
F M4

ZMZ′

48ΓZ′

[

(1 + z2)(a′2e + v′2e )(a′2q + v′2q )
]

. (6.4)

A further integration over z gives the production cross section for the Stueckelberg Z ′

gauge boson

σAB · Br(Z ′ → l+l−) = K
π

6s

∑

q

CqW{AB(qq̄)}(s,M
2
Z′), (6.5)

where dimensionless Cq are given by

Cq = 2g2
MBr(Z ′ → l+l−)(a′2q + v′2q ), q = u, d (6.6)
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and where g2
M =

√
2GF M2

Z . The Cu − Cd parameterization is as defined in ref. [18] 1 and

allows one to use experimental limits set on the dilepton final state production cross section

without making reference to the PDFs; the couplings of a particular model are needed only,

if the experimental limits are known. In fact, such a paramerization is perhaps the first

step in solving the potential ”LHC inverse problem” [37] for the case of the Z ′ as one can

directly map between the signature space and the parameter space in a very simple way.

The relation between Cu and Cd is

Cu

Cd
=

(v′2u + a′2u )

(v′2d + a′2d )
∼ Br(Z ′ → uū)

Br(Z ′ → dd̄)
. (6.7)

Although C(u,d) are functions of ε for the StSM, the ratio is in fact independant of ε. The

formulas given in this section are also valid for the case of the StLR via transcribing the

couplings as laid out in eq. (3.11).

6.2 Constraints on the StSM parameter space from the CDF and DØ data

As discussed above the Cu-Cd parametrization [18] provides a useful technique to explore

the limits on new physics and allows one to distinguish among various classes of models.

For instance, in the Cu −Cd plane the Cu and Cd predicted in the StSM lie inside a band.

The band structure for StSM arises since the ratio Cu/Cd as given by eq. (6.7) lies in the

range 2.49 ∼ 3.37 for MZ′ lying in the range 200 ∼ 900 GeV. Similarly, the Cu and Cd

predicted in the q + xu model [18] also lie in a band, while the Cu and Cd for the B − xL

model [18] live on a line. In figure 3 we give a numerical evaluation of the Cu and Cd

using the most recent CDF data of 819 pb−1 in the dilepton channel [38]. The Cu-Cd

exclusion plots of figure 3 can be used to constrain ε for a given MZ′ . These constraints are

consistent with the constraints derived using a smaller data sample of approxomately 275

pb−1 which, however, uses the more sensitive DØ mode [39]. In addition to the above, one

also has constraints on the parameter space from the non-observation of the Z ′ from the

CDF and DØ data [38 – 41]. These constraints were shown to limit values of (ε,MZ′) in [4],

while still allowing for the possibility of a narrow StSM Z ′ which could even lie relatively

close to the Z-pole.

7. Discovery reach of LHC for StSM Z
′ boson

7.1 σ · Br(Z ′ → l+l−) at the LHC

Next we give an analysis for the exploration of the Z ′ boson at the LHC. Before proceeding

further it is instructive to examine the shape of the dσ/dM as a function of the invariant

mass M . This is exhibited in figure 4 where the plots are given for an array of values of

ε (ranging over the set {.03, .06, .1, .15, .2} where the larger values of ε are taken only for

illustrative purposes) for the case when M1 = 1 TeV. One can appreciate the narrowness of

the Z ′ pole from these plots. This type of shape and width is strikngly different from the

1We note that the analysis of ref. [18] absorbs a factor of 8 in their PDFs contained within the function,

defined as WZ′
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Figure 3: Excluded regions in the Cu −Cd plane from the current 95% C.L. limit for σ ·Br(Z ′ →
l+l−) given in [38] at 819 pb−1 for different Z ′ masses, labeled as M in the figure. The shaded

green band is the region where the StSM model lies and where 2.49Cd < Cu < 3.37Cd. The light

straight line corresponds to Cu and Cd in the B − xL model where Cu = Cd (see [18]). The

area between the two black straight lines is the region where the q + xu model lies and where

(3 − 2
√

2)Cd < Cu < (3 + 2
√

2)Cd. The 10 + x5̄ model is constrained below the dashed red line

which corresponds Cu = 2Cd.

ones encountered in the conventional Z ′ models [16] and also in Kaluza-Klein excitations

of the Z boson in large radius extra dimension models [42, 43].

The quantity that will be measured experimentally at the LHC is σpp ·Br(X → l+l−) ≡
σ · Br(X → l+l−) in the process pp → X → l+l− where X is a neutral resonant state

produced in pp collisions which can decay into a lepton pair. Here we give a theoretical

analysis of this quantity for the case when X = Z ′, and in the next section we will consider

the case when X = G, the spin 2 graviton of a warped geometry. In the analysis of

σ ·Br(Z ′ → l+l−) we will discuss two regions: a low mass region with the dilepton invariant

mass Mll̄ up to 800 GeV and a high mass region with Mll̄ extending from 800 GeV up to

the maximum relevant mass reach of the LHC. The reason for this ordering is as follows:

the region with Mll̄ up to 800 GeV has already begun to be explored at the Tevatron

using up to about 1 fb−1 of data, and the CDF and DØ data puts constraints on ε as a

function of the dilepton invariant mass. Thus in the analysis of the low mass Mll̄ region at
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Figure 4: The invariant dilepton differential cross section, dσ(pp → Z ′ → l+l−)/dM as a

function of the dilepton invariant mass for various ε values. The plot exhibits the narrow widths

at the Z ′ pole. The dashed curve corresponds to ε = .06. The shapes of these curves illustrate the

exceptionally narrow resonance widths of the StSM Z ′ with distinct distributions.
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Figure 5: The production cross section σ · Br(Z ′ → l+l−) [pb] in the StSM at the LHC in the

low mass region with the inclusion of the LEP and Tevatron constraints. The curves in descending

order correspond to values of ε from .06 to .01 in steps of .01.

the LHC we can incorporate these constraints. However, one has no direct constraints in

the dilepton invariant mass region above 800 GeV, which explains the separate analyses of

σ · Br(Z ′ → l+l−) for the low and high mass regions.
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Figure 6: The production cross section σ · Br(Z ′ → l+l−) [fb] in the StSM at the LHC in the Z ′

high mass region up to Z ′ mass of ≈ 3.5 TeV. The curves correspond to values of ε ranging from

.06 to .01 in descending order in steps of .01. The StSM production cross sections sit several orders

of magnitude below those of other Z ′ models.

We begin with an analysis of σ · Br(Z ′ → l+l−) in the low mass region where we

use the constraints on (ε,MZ′) as obtained in ref. [4] using the cross section limits from

[39]. The results are displayed in figure 5. As expected one finds that the current data

on σ · Br(Z ′ → l+l−) constrains only the mass region of Z ′ for values MZ′ . 350 GeV.

We note that for ε as high as ≈ .04 one may have an StSM Z ′ as low as 175 GeV, while

with a Z ′ mass of 250 GeV, ε may be as high as ≈ .035 within the current experimental

limits. Next we discuss the high mass region for the StSM Z ′. As discussed above the high

mass region of StSM Z ′ remains unconstrained by the CDF and DØ data, and thus in this

region only the LEP electroweak constraints apply. The analysis of figure 6 gives a plot

of σ · Br(Z ′ → l+l−) as a function of MZ′ in the high mass region for values of ε ranging

from .01 to .06 in ascending order in steps of .01. From figure 6 and from the analysis of

Refs. [33, 44] for other Z ′ models one infers that the production cross section for StSM

Z ′ lies orders of magnitude below those for the Z ′ production in E6 models and other Z ′

models. The size of σ · Br(Z ′ → l+l−) thus provides a clear signature which differentiates

the StSM Z ′ model from other Z ′ models.
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7.2 Signal to background ratio

The dilepton channel will be analyzed at the LHC in the ATLAS [58] and CMS [59] detec-

tors, and as is discussed below, both detectors have the ability to probe the narrow StSM

Z ′ boson. Experimentally, the discovery of a narrow resonance depends to a significant

degree on the bin size for data collection with the chance of detection increasing with a

decreasing bin size. This is so because the integral over the bin is effectively independent of

the bin size for the signal (assuming the narrow resonance falls within the bin). However,

this integral is essentially linearly dependent on the bin size for the SM background. In

the analysis of the SM background we have included the Z, γ, and γ−Z interference terms

in the Drell-Yan analysis, but have not included the backgrounds from other sources such

as from tt̄, bb̄,WW,WZ,ZZ etc. However, these backgrounds are known to be at best a

few percent of the Drell-Yan background [65]. Regarding the bin size, it depends on the

energy resolution σE/E of the calorimeter. For an electromagnetic calorimeter the energy

resolution is typically parameterized by σE/E = a/
√

E⊕b⊕c/E where addition in quadra-

ture is implied [69]. The term proportional to 1/
√

E is the so called stochastic term and

arises from statistic related fluctuations. The term b is due to detector non-uniformity and

calibration errors, and the term c is due mostly to noise. For the ATLAS detector (liquid

Ar/Pb) the energy resolution is parameterized by [69] σE = 10%/
√

E⊕ .4%⊕ .3/E and for

the CMS detector (PbWO4) it is parameterized by σE = 3%/
√

E ⊕ .5%⊕ .2/E where E is

in units of GeV. From the above we find the following relations for the bin size B (taken

to be 6σE) at the mass scale M (M is measured in units of TeV)

BATLAS = 24(.625M + M2 + .0056)1/2GeV

BCMS = 30(.036M + M2 + .0016)1/2GeV. (7.1)

For M > 3 TeV, the M2 term dominates in eq. (7.1) and the bin size goes linearly in M , so

BATLAS ∼ 24M GeV and BCMS ∼ 30M GeV for large M . A plot of bin sizes as a function

of the mass scale is given in figure 7 for the two LHC detectors. One finds that at low mass

scales the CMS has a somewhat better energy resolution and thus a somewhat smaller bin

sizes and at large mass scales ATLAS has a somewhat better energy resolution and thus

a somewhat smaller bin size with a cross over at M ∼ 1 TeV. However, on the whole the

energy resolution and the bin size of the two detectors are comparable within about 10%.

For the StSM Z ′ the analysis of figure 8 shows that the signal to background is greater

than unity in significant parts of the parameter space, and in some cases greater than 4,

thus illustrating that the LHC has the ability to detect a strong signal for a StSM Z ′.

7.3 How large a Z ′ mass and how narrow a Z ′ width can LHC probe?

In figure 9 we give the discovery reach for finding the StSM Z ′ with various values of ε

as a function of MZ′ for integrated luminosities in the range 10 fb−1 to 1000 fb−1. The

criterion used for the discovery limit in the analysis given here is an assumption that

5
√

NSM events or 10 events, whichever is larger, constitutes a signal where NSM is the SM

background, and we have scaled the bin size with MZ′ appropriate for the ATLAS detector

with a conservative lower limit of 20 GeV below .5 TeV. In this part of the analysis we
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Figure 7: A plot of the mass window or bin size as a function of the mass scale for the ATLAS

and CMS detectors.

have assumed that detector effects can lead to signal and background losses of 50 percent

(see Section (8.2)). If better efficiency and acceptance cuts are available, the discovery

reach of the LHC for finding a Z ′ will be even higher than what we have displayed. With

an assumption of efficiencies as stated above, one finds that with 100 fb−1 of integrated

luminosity, one can explore a Z ′ up to about 2 TeV with ε = 0.06, and this limit can be

pushed to ≈ 3 TeV with 1000 fb−1 of integrated luminosity. Further, one finds that for

1000 fb−1 of integrated luminosity, one can explore a Z ′ up to about 2 TeV for ε as low as

. 0.02. Also displayed in figure 9 are the discovery limits for different decay widths as a

function of the Z ′ mass again for luminosities in the range 10 fb−1 and 1000 fb−1. Here one

finds that the LHC can probe a 100 MeV Z ′ up to about 2.75 TeV and a 10 MeV width up

to a Z ′ mass of about 1.5 TeV. A more detailed exhibition of the capability of the LHC to

probe the StSM Z ′ model is given in figure 10. Here one finds that the StSM model with

a Z ′ width even in the MeV and sub-MeV range will produce a detectable signal in the

dilepton channel in the Drell-Yan process with luminosities accessible at the LHC. While

the analysis above is for the specific StSM model, the general features of this analysis may

hold for a wider class of models which support narrow resonances.

In figure 11 we give a comparison of the LHC’s ability to probe the narrow StSM Z ′

relative to other Z ′ models [45, 46] to address the question of how the StSM Z ′ “stacks
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Figure 8: A plot of the ratio σ · Br(Z ′ → l+l−)StSM/σSM (Z, γ → l+l−) including the γ − Z

interference term in the SM as a function of the Z ′ mass for the ATLAS and CMS detectors

assuming the bin sizes as in figure 7 for values of ε in the range .03-.06. The signal to background

ratio is larger for the CMS detector at low mass scales while it is larger for the ATLAS detector at

large mass scales with a cross over occuring at around 1 TeV.

up” to these models. In order to make the appropriate comparisons of the discovery limits

for the StSM with the other Z prime models we do not impose detector cuts on the StSM

Z ′ limits displayed in figure 11, since such cuts were not imposed for the discovery limits

of other Z ′ models shown in figure 11. The analysis of figure 11 shows that the StSM

Z ′, even with its exceptionally narrow width, may be probed on scales comparable with

models that have resonance widths of the order of several GeV or higher.

8. Comparison of Stueckelberg Z
′ with a massive graviton of warped ge-

ometry at the LHC

As discussed above one finds that the Stueckelberg Z ′ boson is a very narrow resonance

which sets it apart from all other Z ′ models. However, there is another class of models,

i.e., models based on warped geometry [9, 10] (labeled RS models), which can mimic

the Stueckelberg Z ′ in a certain part of the parameter space as far as the narrowness of

the resonance is concerned. It was shown in the analysis of Ref. [4] that the signature

spaces for these two models lie close to each other in certain regions of their respective

parameter spaces, but the models are still distinguishable in the dilepton mass region

accessible at the Tevatron. Here we extend the analysis of their relative signatures to the

LHC energies. The geometry of RS models is a slice of AdS5 described by the metric ds2
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Figure 9: A plot of the discovery limits of Z ′ in StSM with the discovery limit defined by 5
√

NSM

or by 10 events, whichever is larger. The inflections, or kinks, in the plots are precisely the points

of transitions between the two criteria. Regions to the left and above each curve can be probed by

the LHC at a given luminosity. The top point on each curve corresponds to ε = .061. The analysis

is done for the ATLAS detector but similar results hold for the CMS detector.

=exp(−2krc|φ|)ηµνdxµdxν−r2
cdφ2, 0 ≤ φ ≤ π, where rc is the radius of the extra dimension

and k is the curvature of AdS5, which is taken to be the order of the Planck scale. We work

in the regime where the SM particles are confined to the TeV scale brane, while gravity is

propagating in the bulk [9, 47]. The effective scale that enters in the electroweak region is

the scale Λπ = M̄P lexp(−krcπ), and for reasons of naturalness it is typically constrained
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Figure 10: A plot of the discovery reach of the LHC for small StSM Z ′ widths. The allowed

regions are to the right and below each curve for a given luminosity. This figure is a blown up

version of the very low Z ′ width region of figure 9.

by the condition Λπ < 10 TeV. Values of k/M̄P l over a wide range 10−5 − .1 have been

considered in the literature [49]. However, the range below .01 appears to be eliminated

from the electroweak constraints. In this analysis we consider the lightest massive graviton

mode .

8.1 Drell-Yan cross sections via a massive graviton of warped geometry

We consider the process pp → G → f f̄ for the first massive graviton mode in the RS

model. The partonic production cross section for this mode receives contributions both

from quarks and gluons, and is given by [51, 52, 54, 56, 57]

dσG
qq̄

dz
+

dσG
gg

dz
=

1

2

κ4M6

320π2
[∆qq̄(z) + ∆gg(z)]

1

(M2 − M2
G)2 + M2Γ2

G

. (8.1)

The total decay width that enters above is given by the sum of the partial widths which

are [51, 53, 54]

Γ(G → V V̄ ) = δ
κ2M3

G

80π
(1 − 4δV )1/2

(

13

12
+

14

3
δV + 4δ2

V

)

θ(MG − 2MV ) (8.2)

Γ(G → f f̄) = N c
f

κ2M3
G

320π
(1 − 4δf )3/2(1 +

8

3
δf )θ(MG − 2mf ) (8.3)
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of integrated luminosity. With inclusion of detector cuts the discovery reach of the LHC for the

StSM Z ′ comes down to about 3 TeV.

Γ(G → gg) =
κ2M3

G

20π
(8.4)

Γ(G → γγ) =
κ2M3

G

160π
. (8.5)

Here δf = m2
f/M2

G, δV = M2
V /M2

G, and δ = (1/2, 1) for (V = W,Z). For the first massive

mode, κ is given by [53, 54, 56]

κ =
√

2
x1

mG

k

M̄P l
(8.6)

where x1 = 3.8317 is the first root of the Bessel function of order 1, and M̄P l is the reduced

Planck mass in four dimensions (M̄P l = MP l/
√

8π). The leading order angular dependance

is given in terms of [54, 56, 57]

∆qq̄(z) =
π

8Nc

5

8
(1 − 3z2 + 4z4), ∆gg(z) =

π

2(N2
c − 1)

5

8
(1 − z4). (8.7)

In the narrow width approximation we have to NLO

dσG
pp

dz
= KG(M2

G)
1

2s

κ4M6
G

320π2

π

MGΓG
× (8.8)

[

∑

q

∆qq̄(z)W{pp(qq̄)}(s,M
2
G) + ∆gg(z)W{pp(gg)}(s,M

2
G)

]

– 25 –



J
H
E
P
1
1
(
2
0
0
6
)
0
0
7

Resonance Mass  [GeV]
200 500 1000 1500 2000 2500 3000 3500 4000

10
−3

10
−2

10
−1

10
0

10
1

10
2

D
ec

ay
 W

id
th

s 
 [G

eV
]

200 500 1000 1500 2000 2500 3000 3500 4000
10

−3

10
−2

10
−1

10
0

10
1

10
2

Γ
Z

/ → All 

Γ
G

 → All 

Γ
G

 → All 

k/M
pl

 =.01

Λπ < 10 TeV 

EW

Tevatron   
Constraint 

|R
5
| < M2

5
 

RS Allowed

StSM Allowed Region

StSM  ε =.06 

Tevatron   
Constraint

LEP EW     
Constraint 

Region

StSM and RS 
Decay Widths
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where Wpp(qq̄) is defined in Section (6) and Wpp(gg) is defined by

W{pp(gg)}(τ) =

∫ 1

0

∫ 1

0
dxdyδ(τ − xy)fg,p(x)fg,p(y), (8.9)

and the more strongly mass dependant RS K factor (KG) is discussed in detail in Refs.

[57]. The production cross section including the quark and gluon contributions is in the

narrow width approximation given by

σ · Br(G → l+l−) = KG(M2
G)

1

s

κ4M6
G

15360

1

MGΓG

∑

q

W{pp(qq̄)}(s,M
2
G) (8.10)

+KG(M2
G)

1

s

κ4M6
G

10240

1

MGΓG
W{pp(gg)}(s,M

2
G).

8.2 Signature spaces of StSM Z ′ and of the warped geometry graviton

A relative comparison of the StSM and of the RS model is given in Table (3) where the

decay width of the Stueckelberg Z ′ boson for the case ε = 0.06 is given as a function of

the Z ′ mass in the range (1000-3000) GeV, and the corresponding σ · Br(G → l+l−) is

exhibited. Also shown are the decay widths for an RS graviton in the same mass range for

k/M̄P l = 0.01.
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Production Cross Sections in the StSM and RS Models

(MZ′ ,MG) ΓZ′ (GeV) ΓG (GeV) σZ′ · Br (fb) σG · Br (fb)

1000 0.058 0.141 4.29 9.98

1250 0.073 0.176 1.72 3.11

1500 0.087 0.212 0.779 1.15

1750 0.102 0.247 0.384 0.475

2000 0.117 0.283 0.200 0.215

2250 0.131 0.318 0.109 0.104

2500 0.146 0.354 0.061 0.053

2750 0.160 0.389 0.035 0.028

3000 0.175 0.425 0.021 0.015

Table 3: A comparison of the narrow resonance widths and σ.Br(l+l−) in StSM for ε = .06 and

in the RS warped geometry with k/M̄Pl = .01 as a function of the resonance mass in GeV.

Quite remarkably, the spin 1 Z ′ of the StSM and the spin 2 massive graviton of the

RS model have nearly identical signatures in terms of the decay widths and the production

cross sections around a resonance mass of 2 TeV (with or without out detector cuts). In

Table (4) we give an analysis of the number of events that can be observed in the ATLAS

detector with 100 fb−1 of integrated luminosity. One finds that for high masses the number

of events that one expects to see at the LHC for the StSM Z ′, with ε = 0.06, are similar

to the number of events one expects for the RS model for k/M̄P l = 0.01. For the case of

the RS model, simulations conducted by ref. [53] show that overall detector losses range

from (27-38) percent between (500-2200) GeV, and we have extrapolated these cuts to the

3 TeV mass region. For the case of Z ′, which has a different angular dependancy than

the graviton due to spin, we have assumed a uniform 50 percent loss of events at in the

range of Z ′ mass investigated. This reduction factor is consistent with the reduction factor

used by ref. [60], and is similar to the reduction factor used by other groups [61]. For

the SM background, denoted as NB = NSM , the same detector loss is assumed, and it

can be seen in Table (4) that this simulation is in good agreement with the analysis of

ref. [53]. Of course a slightly more realistic analysis of the number of events that may be

observed requires simulating detector efficiencies more accurately, which in turn requires

the implementation of the StSM couplings in event generation simulators [62 – 65, 60].

In figure 12 we give a comparison of the signature spaces for the decay of the StSM

Z ′ and of the RS graviton in the warped geometry model using the decay width-resonance

mass plane. The allowed regions (shaded) for the two models are exhibited, where the

unshaded regions correspond to constrained regions of the parameter spaces of the two

models. One finds that although there is a region of the parameter space of the RS model

where the decay widths can be narrow, the region of potential overlap with the StSM is

avoided if one includes the constrains of the oblique parameters [66, 67]. Figure 13 gives

a more direct method for differentiating the two classes of models. Here one has plots of

σ ·Br(Z ′ → l+l−) and σ ·Br(G → l+l−) as a function of the resonance mass. One finds that

the allowed regions of the signature space of the two models consistent with the parameter
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Events in the StSM and RS Models

(MZ′ ,MG) Bin (GeV) NSM NS = (NSt, NRS) Nmin
S

1000 30.65 54.45 (214.33,716.96) 36.90

1250 36.79 20.95 (85.90,216.96) 22.89

1500 42.89 9.22 (38.94,77.73) 15.18

1750 48.96 4.44 (19.18,31.30) 10.53

2000 55.02 2.27 (10.01,13.72) 10

2250 61.07 1.22 (5.46,6.41) 10

2500 67.11 0.68 (3.07,3.15) 10

2750 73.14 0.39 (1.77,1.60) 10

3000 79.17 0.22 (1.04,0.84) 10

Table 4: A comparison of the signal events with integrated luminosity of L = 100 fb−1 in the StSM

for the case ε = .06 with the signal in the RS warped geometry for k/M̄Pl = .01 including ATLAS

detector effects as a function of the resonance mass in GeV. Acceptance(A) and efficiency(ε) for

the RS case is as in ref. [53], while for the StSM we use the spin 1 detector losses given in ref. [60]

≈ 50 % as discussed in the text. For X = (Z ′, G) of table 3, NS = (σ · Br)εAL, NB = NSM

(background integrated over the bin), Nmin

S
= 5

√
NB or 10, whichever is larger. The minimum

signal cross section is (σ · Br)min = (εAL)−1Nmin

S
for each model.

space constraints provides a clear differentiation between these two classes of models. Thus

figure 13 provides an important tool for establishing the nature of the resonance once a

narrow resonance is discovered. Thus, for example, the σ · Br(Z ′ → l+l−) is an order of

magnitude or more smaller than σ ·Br(G → l+l−) over most of the dilepton invariant mass

that will be probed by the Drell-Yan process at the LHC.

8.3 Angular distributions in the dilepton channel in pp → (Z ′, G) → l+l−

Angular distributions in the C-M frame of the final dilepton state give clear signatures of

the spin of the produced particle in the Drell-Yan process (for recent works see, for example,

Refs.[55, 68]). Thus angular distributions are a powerful tool in distinguishing the StSM

Z ′, a spin 1 particle, from the massive graviton of warped geometry, a spin 2 particle. The

CDF group has already carried out angular distribution analyses [41] using the cumulative

data at the Tevatron and more detailed analyses are likely to follow. Similar analyses at

the LHC would allow one to investigate the spin of an observed resonance with much more

data. In the following we give a relative comparison of the angular distributions arising

from the StSM Z ′ and from the massive gravtion of warped geometry. To this end we

first examine the feasibility of distinguishing the StSM Z ′ signal from the Standard Model

background. This is done in figure 14 for Z ′ masses of 500 GeV and as well as 1 TeV with

a bin size of 20 GeV and 35 GeV respectively. figure 14 shows that the StSM Z ′ signal in

this case is distinct from the γ, Z background. Second, the StSM angular distribution sits

high above the SM background and thus an observation of such a distribution can lead to

an identification of new physics in the dilepton channel.

– 28 –



J
H
E
P
1
1
(
2
0
0
6
)
0
0
7

σ 
⋅ B

r (
Z’

 →
 l+  l− )  

[fb
]

200 500 1000 1500 2000 2500 3000 3500
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

σ 
⋅ B

r (
G

 →
 l+  l− )  

[fb
]

an
d

StSM Allowed Region

StSM  ε =.06 

RS  k/M
pl

 =.01 

LEP EW     
Constraint 

Tevatron   
Constraint 

Tevatron   
Constraint 

StSM and RS

RS

EW

|R
5
| < M2

5
 

Λπ < 10 TeV

LHC Production Cross Sections  

Allowed
Region

Signature Spaces  

Resonance Mass  [GeV]

Figure 13: A comparison of the LHC signature spaces in the dilepton channel using σ(pp → Z ′ →
l+l−) for the Z ′ production and its decay into dileptons for the StSM and using σ(pp → G → l+l−)

for the production of the graviton and its decay into dileptons for the RS model. The dashed line is

for the RS case with k/M̄Pl = .01. The allowed regions are constructed by utilizing the constrained

parameter spaces of StSM [4] and of the RS model [47, 48, 39].

Next we give a relative comparison of the angular distribution in the dilepton channel

arising from the StSM Z ′ and the massive graviton of warped geometry. This is done in

figure 15 for a resonance mass of 2 TeV, the mass region where an overlap between the two

models can occur if the constraints on the RS model are relaxed. The top graph in figure 15

gives the angular distributions arising for the Z ′ exchange but without the Standard Model

background, i.e., what is plotted is the pure signal. Also plotted is the pure signal from

the graviton exchange which consists of contributions from the quarks and the gluons

which are separately exhibited. In the lower graph of figure 15 the angular distributions

arising for the StSM Z ′ and for the massive graviton exchanges including the Standard

Model background are exhibited. The graph shows that the signal plus the background

lies significantly higher than the SM background, and further the sum of the Z ′ signal

and the SM background is easily distinguishable from the sum of the massive graviton

signal and the SM background. The angular distributions for the graviton exchange are

sensitively dependent on the graviton mass, mainly due to the sensitivity of the PDF [35]

for the gluon on the mass scale. Thus the angular distributions for the graviton will change

with the mass scale and change significantly. However, the angular distributions for the Z ′

and for the graviton will continue to be identifiably distinct and allow one to distinguish

between these two classes of narrow resonance models.
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Figure 14: Angular distribution dσ/dz vs z = cos(θ∗) in the dilepton center of mass frame in the

decay Z ′ → l+l− in StSM for Z ′ mass of 500 GeV (upper graph) and 1 TeV (lower graph). The

SM background is also shown, and the StSM contribution sits high above it.
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Figure 15: An exhibition of the angular distribution dσ(pp → Z ′ → l+l−)/dz for the StSM model

and dσ(pp → G → l+l−)/dz for the RS model in the dilepton center of mass system, as defined in

eqs. (6.4), (8.9). For the StSM, ε is taken at .06 and G is the first resonant mode of the RS model,

with (k/M̄Pl) = .01 and the resonance mass is 2 TeV in each case. For the RS model the parameter

choice requires relaxing the oblique constraints and the constraint on Λπ.

9. Conclusions

In this paper we have carried out an investigation of narrow resonances with specific focus

on two classes of models which have recently emerged where narrow resonances arise quite

– 31 –



J
H
E
P
1
1
(
2
0
0
6
)
0
0
7

naturally. The first of these are the Higgless extensions of the Standard Model gauge

group, and of the Left-Right symmetric model gauge group where the extra gauge boson

becomes massive via the Stueckelberg mechanism. A narrow Z ′ naturally arises in these

models. The second class of models are those based on warped geometry which give rise

to a narrow graviton resonance for k/M̄P l ∼ .01. The main focus of this paper was to

investigate the capability of the LHC to discover narrow resonances specifically belonging

to these classes of models and to discriminate between them by examining their signature

spaces. For the Stueckelberg model we discussed the constraints on the parameters space

of the model using the LEP data and the CDF and DØ data. These constraints were then

utilized to explore the narrow Stueckelberg Z ′ at the LHC. The analysis using the dilepton

production in the Drell-Yan process via the Z ′ boson shows that one will be able to explore

a narrow Z ′ resonance of Stueckelberg origin up to about 2 TeV with 100 fb−1 of integrated

luminosity and further up to 2.5 TeV with 300 fb−1 of integrated luminosity. With 1000

fb−1 of integrated luminosity one could even explore a Stueckelberg Z ′ beyond 3 TeV. The

results of this analysis are summarized in figure 9 and figure 11.

We carried out a similar analysis for the dilepton production in the warped geometry

RS model which also has the potential of supporting a narrow resonance. It is then interest-

ing to ask how a Stueckelberg type narrow resonance could be distinguished from a narrow

massive graviton of warped geometry. Indeed there is a range of the parameter space where

an overlap exists between the two models with the width of the massive graviton of the

warped geometry being similar to the width of the Z ′ arising from the Stueckelberg model.

We have shown that one of the clear distinguishing features between them is σ · Br(l+l−)

for dilepton production in the Drell-Yan process which proceeds through the interaction

pp → Z ′ → l+l− for the Stueckelberg model and via pp → G → l+l− for the case of the RS

model. The analysis of figure 13 shows that for any resonance mass the signature spaces of

the StSM and of the RS model are distinct and one can discriminate between them using

the σ · Br(l+l−) criterion. In addition, the angular distributions in the dilepton center of

mass system provide a clear discrimination between the two models. Here one finds that

the angular distributions from the StSM Z ′ and from the massive graviton lie well above

the Standard Model background and further are distinctly dissimilar as exhibited in the

analysis of figure 15.

Some general features of the searches for narrow resonances were also discussed. The

bin size used in data collection has a direct bearing on the signal to background ratio as

shown in figure 8. The analysis presented in this paper reveals the remarkable phenomenon

that the models considered here can be tested even when the resonance widths are small

and the resonance masses are large. Specifically one finds that the StSM model can produce

observable cross section signals with a Z ′ width lying in the MeV or even in the sub-MeV

range while the Z ′ mass may be in hundreds of GeV to TeV range. This phenomenon is

exhibited in figure 10. While the result of figure 10 is presented for the specific case of

StSM Z ′ model, similar considerations may apply to a wider class of models which support

a narrow resonance. The evidence for a narrow resonance will be an important hint for an

altogether new type of physics beyond the Standard Model and possibly a hint of a string

origin.
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L.E. Ibáñez, F. Marchesano and R. Rabadán, Getting just the standard model at intersecting

branes, JHEP 11 (2001) 002 [hep-th/0105155];
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